中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 机器人学研究室  > 学位论文
题名: 基于随机方法的纳米操作机器人实时定位与路径规划研究
其他题名: Stochastic Approach for Feature-Based Localization and Planning in Nanomanipulations
作者: 袁帅
导师: 席宁 ; 董再励
分类号: TP242
关键词: 原子力显微镜 ; 探针盲建模算法 ; 局部扫描 ; 探针定位 ; 纳米操作
索取号: TP242/Y88/2012
学位专业: 模式识别与智能系统
学位类别: 博士
答辩日期: 2012-05-21
授予单位: 中国科学院沈阳自动化研究所
学位授予地点: 中国科学院沈阳自动化研究所
作者部门: 机器人学研究室
中文摘要: 纳米技术(Nanotechnology)是指在原子与分子尺度上研究物质的特性和相互作用,以及利用这些特性制备纳米材料,制造纳米器件和系统。纳米尺度上的观测与操作是开展纳米科学研究、纳米尺度事物的新特性发现和器件加工制造的关键技术手段。原子力显微镜(Atomic Force Microscope:AFM)由于具备分辨率高、重复性好与可控性强的特点而成为目前极具发展潜力的纳米观测与操作工具。近十年来,应用AFM进行纳米尺度观测与操作技术已取得了巨大进展,形成了新的纳米技术发展途径。 AFM是以探针作为终端执行器用于获取样品表面的特征信息实现纳米观测,同时也可以对样本施加作用力进行纳米操作。由于在纳米操作环境中存在多种不确定因素,例如探针控制误差、系统温漂、纳米尺度作用力的影响、探针形貌效应等,使得AFM操作难以实现在任务空间的精确性和稳定性。 针对上述问题,本论文开展了探针建模、随机思想与路标定位相结合的探针精确定位方法研究;开展了基于并发行为的虚假夹具纳米操作技术研究,以解决单探针操作存在的不确定、不稳定性问题。主要的研究内容包括以下几个方面: 探针形貌建模与地图重构:针对探针形貌效应(如展宽效应)引起的操作环境地图描述不精确问题,开展了基于盲建模算法的探针模型重构方法研究。提出了一种可提高运算速度与精度的盲建模方法,研究了基于探针形貌建模的环境地图较精确重构方法,其可行性和有效性得到了仿真和实验验证。 探针作业精确定位:针对探针在任务空间的位置不确定性,本文以概率机器人学的理论方法为基础,开展以操作环境地图中特征物为路标的探针位置定位方法研究;开展了基于局部扫描的快速路标观测,建立探针在任务空间的位置实时最优估算方法。创新性解决了路标观测与探针扫描运动的耦合相关性难题。 基于概率统计的探针运动建模:在分析PZT滞环、蠕变与温漂等不确定因素影响的基础上,提出了基于随机统计方法的探针运动概率建模方法,并开展了相关实验研究和有效性验证,为探针定位提供了新的理论方法。 虚拟夹具操作方法:针对探针操作状态不确定性,在路标定位基础上,运用机器人作业路径规划理论方法,构建了虚拟夹具操作方法和监控界面,有效解决了单探针操作的不稳定问题,为定姿态的机器人化纳米操作提供了可实现技术途径。 实验系统构建与实验研究:在上述探针定位与虚拟夹具纳米操作理论方法研究基础上,设计构建了基于AFM的纳米操作平台,系统地设计了实验方法,开展了大量相关实验研究与方法有效性的验证工作。实验结果表明上述研究方法能够有效地改善纳米操作的效率和精确性。 本文的实验研究工作,对基于AFM的纳米操作理论研究方法有一定指导意义,为基于AFM的自动化纳米操作技术发展提供了有意义的理论方法。
英文摘要: Nanotechnology refers to the research on the properties and interactions of the substances at atomic and molecular scales, uses these characteristics to prepare the nanomaterial, processes the nanodevices, detects and characterizes on the nanoscale. Observation and manipulation at nanoscale are the key approaches for developing the nanoscience research, discovering the new features of nanoscale substance, processing and manufacturing the nanodevices. AFM has become a deeply developable tool in nanoobservtion and manipulation, with its high resolution, good repeatability and controllability.  In the AFM nanoobservation and manipulation, the tip is used as executive effector to obtain the character information on the sample surface, and it can be used to exert the force on sample surface to execute nano-operation. This research has developed for almost ten years, however, the tip cannot position accurately in the task space and there is the unstable problem in the operation of single tip, due to the various uncertainties in the nanomanipulation environment, such as PZT control errors, the random change of thermal drift, the unaccurate model of the nonlinear force at nanoscale, and the environment map error caused by the tip broaden effect etc.  As for the above mentioned problems, this paper combines the stochastic ideas with landmark positioning, realizing the precise positioning of the tip in the case of non precise sensor. Also the research of virtual clap based on simultaneous operations is developed. By using single probe to achieve the operation effect of multi-probes, the operation issues of non-stability caused by single probe is solved, and the landmark can be dynamically configured. The major researches include:  The estimation of the tip shape and the accurate reconstruction of the environment map. The probe tip is the core of observation and manipulation, however the broadening effect caused by the tip shape can increase the effects of the abovemetioned uncertainties. So the tip shape needs to be estimated, and the precise map needs to be established. Thus the reconstruction approach of the tip model based on the blind modeling algorithm is studied in this paper. Because this algorithm takes a lot of computing time, and the optimal noise reduction threshold is hard to be identified etc., this paper proposes a new blind modeling method, which can improve the speed and precision of the blind modeling algorithm, and realize the accurate reconstruction of the AFM environment map. And the feasibility and validity of the research method above are verified through the simulation and experiment results. The precise positioning method of the tip in the task-space. This paper is based on the theory method of probabilistic robotics, selects the features of the object in the nano operating environment map as the landmark, uses the method of local scanning observation to apperceive the spatial relationship between the tip and these landmark, and optimally estimates the location distribution of the tip in the task space in real time. As for the coupling dependent puzzle between the tip motion and the scanning motion during the landmark observation, the scientific and reasonable solution is proposed. The foundation of the tip motion model based on the stochastic. After considering the influence of the uncertainties in the tip movement comprehensively, such as PZT hysteresis loop, creep and thermal drift etc., the paper uses a stochastic method to integrate the PZT hysteresis loop model, creep model and thermal drift model, and build a probabilistic model for the tip motion. And it lays the foundation for the tip positioning based on the landmark observation. The tip trajectory plan for the landmark based environment. According to the shorted path principles, the tip trajectory is planned by using local scan strategy. As for job environment without pre-placed landmarks, the virtual clap based nanomanipulation is proposed to perform the dynamic landmark configuration. This method overcomes the lack of the single effector about AFM tip, and can maneuver and move the nanoobjects such as tubes, wires and rods easily. At the same time, this method will maneuvere them by keeping the fixed pose, and virtually make single tip operation into plural tips operation. The parameter calibration of the stochastic method and experimental verification. As for the abovementioned tip positioning by using the stochastic approach, and the virtual clap based nanomanipulation strategy, the AFM based platform and the algorithm parameter calibration plan are established. Many of experimental results verify the correctness and the validity of the proposed methods and show that this strategy can highly promote the nanomanipulation efficiency. In summary, the work of dissertation provides a research guide for AFM based nanomanipulation, and lays a foundation for the theory and method in the study of AFM based automated nanomanipulation.
语种: 中文
产权排序: 1
内容类型: 学位论文
URI标识: http://ir.sia.cn/handle/173321/9387
Appears in Collections:机器人学研究室_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
基于随机方法的纳米操作机器人实时定位与路径规划研究.pdf(6083KB)----限制开放 联系获取全文

Recommended Citation:
袁帅.基于随机方法的纳米操作机器人实时定位与路径规划研究.[博士学位论文].中国科学院沈阳自动化研究所.2012
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[袁帅]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[袁帅]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace