SIA OpenIR  > 水下机器人研究室
远程自主潜水器体系结构的应用研究
Alternative TitleApplication Research on Control Architecture of Long Range Autonomous Underwater Vehicle
张禹1,2
Department水下机器人技术研究室
Thesis Advisor封锡盛
ClassificationP754.3
Keyword自主潜水器 智能体系结构 离散事件系统监控 路径规划 实时避障
Call NumberTP242.3/Z36/2003
Pages107页
Degree Discipline机械电子工程
Degree Name博士
2004-02-13
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract本文在总结国内外自主潜水器体系结构研究的最新成果的基础上,结合远程自主投送和探测潜水器的工程项目,对自主潜水器体系结构进行了深入的分析和研究。为了满足远程自主投送和探测潜水器对自主作业能力的需求,提出了事件反馈监控的潜水器体系结构及其相关智能方法。本论文的研究内容概括如下: 1. 为了实现潜水器的自主作业,重点研究了事件反馈监控体系结构的作业使命分解策略、功能结构和信息流程,将事件反馈监控体系结构分成决策层和执行层,由决策层根据作业使命分解策略分解潜水器的作业使命,实现潜水器的规划和决策功能。其中决策层又分为使命规划层和任务规划层,执行层又分为行为执行层和数字驱动层。利用共享内存和消息传递的数据交换机制实现决策层和执行层之间的通信,采用生产者/消费者和客户/服务器两种通信模式实现各功能模块之间的信息交换。 2. 针对潜水器作业使命和任务的规划分解问题,采用离散事件系统RW监控理论的分层递阶监控思想,建立了分层递阶监控的使命和任务规划分解的逻辑结构。分层递阶监控结构分成作业行为模型层、使命规划和任务规划层,与其对应建立了潜水器的作业行为模型及使命和任务规划监控器。通过使命和任务规划监控器对潜水器作业行为的监控,实现使命和任务的规划分解,使潜水器具有自主规划和决策能力,实现水下自主作业。 3. 在分类和定义潜水器内部状态和外界环境状态的基础上,建立了潜水器状态评估模型,为潜水器提供自主规划决策的信息,指导潜水器作业使命和任务的规划分解。采用故障树方法建立潜水器的故障状态评估模型,通过定性分析状态评估模型,确定潜水器的故障模式,为潜水器下一步使命和任务的规划分解提供依据。 4. 本论文提出了改进人工势场法的全局和局部路径规划算法,为潜水器提供远程航行的路径信息。此算法不仅有效地解决了传统人工势场法的局部极小点问题,而且实时性好,可以用于潜水器的离线和在线路径规划。 5. 潜水器避障声纳对未知的海洋环境的感知有一定局限,很难建立精确的三维海洋环境模型。本论文提出将三维水下障碍物的描述、避障声纳探测区域和潜水器的运动控制统一起来,得到三维水下障碍物在水平和垂直面内的大小和形状信息,以此建立三维水下障碍物模型。针对上述模型提出了基于模糊逻辑的三维实时避障算法,解决了潜水器的实时避障问题。
Other AbstractBased upon the newest research outcome of AUVs control architecture in home and abroad,taking the long-range delivering and exploring autonomous underwater vehicle (LAUV) as background, this paper makes in-depth research on the control architecture of AUVs. In view of the autonomous operation requirements of LAUV, the event feedback supervision control architecture (EFSCA) and its intelligent methods were proposed in this paper.The main work of this paper is generalized as follows: 1. In order to improve autonomous capability of LAUV, the mission decomposing, function structure constituting and information flowing of EFSCA are studied. The EFSCA is separated into decision-making layer and action-executing layer. The decision-making layer of EFSCA improves the planning and deciding capability of LAUV. The decision-making layer of EFSCA is further divided into mission-planning layer and task-planning layer. The action-executing layer of EFSCA is separated into behavior-executing layer and digital-driving layer. The communication between the decision-making layer and the action-executing layer is implemented by the data exchange mechanism of memory pool and message transmission. The dada exchange methods of the producer / consumer and the client / server are used for information exchange in EFSCA. 2. To solve the problem of mission decomposition in decision-making layer, this paper adopt the RW supervision theory of discrete even dynamic system (DEDS) to establish the logic structure of hierachical supervision of the mission and task. The logic structure of hierachical supervision is separated into M layer, T layer and B layer, responding to which the mission planning supervisor, task planning supervisor and behavior model are established. The supervisors makes LAUV have capacity of autonomous planning mission and task and decision-making and meets LAUV need of autonomous operation in underwater by supervising decomposition of LAUV’s mission and task. 3. The interior and exterior states of LAUV are classified and defined, and the models of LAUV state evaluating are established, which supply information on planning mission and task, and decision-making for autonomous decomposition of mission and task of LAUV. The fault evaluating models based upon the fault tree are used to diagnose the fault states of LAUV and supply evidences for mission planning and task planning 4. In this paper, the global and local path planning algorithms of improved potential field is brought forward. The algorithms offer path information to LAUV. The path planning algorithms resolve the minimum point problem of potential field method, and implement on-line and off-line path planning in the ocean environment with current. The algorithms have good real-time property and practicality, and their results of simulation test are very valid. 5. There are many shortages to detect unknown oceanic environment by sonar, so it is hard to erect a precise, integrated and uniform three-dimension oceanic environment model. Real-time obstacle avoidance (ROA) of LAUV is a dynamic process with distinct real-time character. ROA is related to ocean environment, as well as kinematics restriction, dynamics and maneuver. To solve ROA problem, a fuzzy obstacle avoidance algorithm based on complex control strategy is presented in this paper.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/9492
Collection水下机器人研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院研究生院
Recommended Citation
GB/T 7714
张禹. 远程自主潜水器体系结构的应用研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2004.
Files in This Item:
File Name/Size DocType Version Access License
远程自主潜水器体系结构的应用研究.pdf(3913KB) 开放获取LicenseApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[张禹]'s Articles
Baidu academic
Similar articles in Baidu academic
[张禹]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张禹]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.