Keywords Cloud

Research Outputs

Co-authors[TOP 5]

Usage Statistics


  Total Views
 3408

  Access Source
    internal: 26
    External: 3382
    Domestic: 2912
    Abroad: 496

  Annual Views
 102

  Access Source
    internal: 1
    External: 101
    Domestic: 89
    Abroad: 13

  Monthly Views
 13

  Access Source
    internal: 0
    External: 13
    Domestic: 13
    Abroad: 0

Visits

Visits

1. AFM tip on-line positioning by using the landmark in nano-manipula.. [1221]
2. Optically induced electrohydrodynamic instability-based micro-patt.. [1151]
3. 铜表面化学气相沉积石墨烯的研究进展:生长行为与控制制备 [1116]
4. Multiscale modeling and simulation for optimizing polymer bulk het.. [1112]
5. Drug-Induced Changes of Topography in Living B Lymphoma Cells: An .. [1090]
6. Simultaneous separation and concentration of micro- and nano-parti.. [980]
7. Progress of graphene growth on copper by chemical vapor deposition.. [958]
8. Cutting Forces Related with Lattice Orientations of Graphene Using.. [921]
9. Atomic force microscopy imaging and mechanical properties measurem.. [859]
10. Drug-Induced Changes of Topography and Elasticity in Living B Lymp.. [819]
11. Imaging and measuring the molecular force of lymphoma pathological.. [809]
12. Sensor Referenced Real-Time Videolization of Atomic Force Microsco.. [804]
13. Probing protein-protein interaction forces using single-molecule f.. [796]
14. Investigation of protein-protein interactions in cancer targeted t.. [794]
15. Extracellular-controlled breast cancer cell formation and growth u.. [779]
16. Sensor Referenced Real-time Visual Feedback in Nanorobotic Manipul.. [778]
17. Atomic Force Microscope-Based Nanorobotic System for Nanoassembly [772]
18. Investigating the morphology and mechanical properties of blastome.. [739]
19. 基于AFM单分子力谱技术的CD20-Rituximab间相互作用力测量 [710]
20. Imaging and measuring the rituximab-induced changes of mechanical .. [710]
21. 基于原子力显微镜的石墨烯可控裁剪方法研究 [709]
22. Drift Compensation in AFM-Based Nanomanipulation by Strategic Loca.. [692]
23. A Fully Automated System for Measuring Cellular Mechanical Propert.. [687]
24. Feature referenced tip localization enhanced by probability motion.. [686]
25. 基于AFM的红细胞及不同侵袭程度癌细胞的成像及机械特性测量 [674]
26. Investigating the Relationship between CD20-Rituximab Binding Forc.. [668]
27. 锯齿型石墨烯带缺陷改性方法研究 [661]
28. Dielectrophoretic assembly and atomic force microscopy modificatio.. [659]
29. 基于AFM的淋巴瘤细胞成像及其机械特性测定 [654]
30. A stochastic state prediction in AFM based nanomanipulation [653]
31. Manipulation of DNA origami nanotubes in liquid using a programmab.. [653]
32. 机器人化纳米操作中任务空间的实时反馈方法研究 [651]
33. Modeling and analyzing nano-particle pushing with an AFM by using .. [639]
34. A probability approach for on-line tip localization with local sca.. [637]
35. Imaging and measuring the protein distribution of lymphoma cells u.. [637]
36. Measuring the physical properties of the lymphoma cells using atom.. [629]
37. Nanoscale imaging and mechanical analysis of Fc receptor-mediated .. [629]
38. Actuation Methods for Nanorobotic Manipulation and Assembly [627]
39. Detecting CD20-Rituximab specific interactions on lymphoma cells u.. [626]
40. High-Throughput Fabrication and Modular Assembly of 3D Heterogeneo.. [625]
41. Probing the molecular interactions of isolated CD20 proteins and l.. [615]
42. 利用AFM探测淋巴瘤细胞表面CD20抗原与其抗体的相互作用 [613]
43. AFM based MWCNT nanomanipulation with force and visual feedback [607]
44. Precisely aligned graphene grown on hexagonal boron nitride by cat.. [598]
45. Combined Experimental and Numerical Simulation Study of PDMS Pneum.. [598]
46. Exploring pulse-voltage-triggered optically induced electrohydrody.. [598]
47. AFM-Based Robotic Nano-Hand for Stable Manipulation at Nanoscale [595]
48. Stiffness measurement of Burkitt's lymphoma cells with atomic forc.. [594]
49. Activation of human ether-a-go-go related gene (hERG) potassium ch.. [590]
50. A probabilistic approach for on-line positioning in nano manipulat.. [590]
51. Friction anisotropy dependence on lattice orientation of graphene [577]
52. 3D nano forces sensing for an AFM based nanomanipulator [576]
53. An experimental study on imaging Burkitt's lymphoma cells by atomi.. [575]
54. Detecting CD20-Rituximab interaction forces using AFM single-molec.. [572]
55. Measuring the molecular force of Burkitt's lymphoma patient cells .. [571]
56. Nanodot deposition and its application with atomic force microscop.. [566]
57. AFM单细胞单分子形貌成像的研究进展 [565]
58. 高速自动化细胞机械特性测量系统 [564]
59. The effects of vacancies on the transport properties of zigzag gra.. [563]
60. Virtual Nano-Hand: A Stable Pushing Strategy in AFM Based Sensorle.. [563]
61. An extended PI model for hysteresis and creep compensation in AFM .. [562]
62. Construction of 3D structure with virus using AFM based nanorobot [555]
63. Defect Integration of Reduced Graphene Oxide based on Dielectropho.. [549]
64. An experimental study on protein-protein interaction using atomic .. [548]
65. Rapid Fabrication of Nanomaterial Electrodes Using Digitally Contr.. [539]
66. Non-ultraviolet-based patterning of polymer structures by opticall.. [534]
67. Development of Mechanostimulated Patch-Clamp System for Cellular P.. [532]
68. Detection and real-time correction of faulty visual feedback in at.. [529]
69. Nano-rod pushing with AFM using nano-hand strategy [526]
70. 基于AFM推动的纳米粒子运动学模型研究 [520]
71. 具有实时视觉/触觉反馈的纳米操作系统 [518]
72. Cutting graphene using an atomic force microscope based nanorobot [515]
73. 基于纳米操作机器人的单根CNT装配方法研究 [512]
74. Progress of AFM single-cell and single-molecule morphology imaging [508]
75. Mechanically Modulated Dewetting by Atomic Force Microscope for Mi.. [508]
76. Nanoscale distribution of CD20 on B-cell lymphoma tumour cells and.. [507]
77. Landmark Based Sensing and Positioning in Robotic Nano Manipulatio.. [506]
78. Accurate Estimation of Tip Shape for Reconstructing AFM Image [500]
79. Drift Compensation and Faulty Display Correction in Robotic Nano M.. [499]
80. 面向细胞机械特性检测的AFM探针快速定位方法 [496]
81. 面向可视化纳米操作的DNA分子运动学建模研究 [485]
82. Supermedia User Interface for Scanning Probe Microscopy [484]
83. Mapping CD20 molecules on the lymphoma cell surface using atomic f.. [482]
84. An AFM based nanomanipulation system with 3D nano forces feedback [481]
85. Efficient Imaging and Real-Time Display of Scanning Ion Conductanc.. [481]
86. Selective pattern of cancer cell accumulation and growth using UV .. [481]
87. Drift Compensation and Faulty Display Correction in Robotic Nano M.. [479]
88. Atomic force microscopy study of the antigen-antibody binding forc.. [478]
89. Development of a haptic user interface for surface sensing and nan.. [476]
90. Nanoscale mapping and organization analysis of target proteins on .. [474]
91. Atomic force microscopy imaging of live mammalian cells [469]
92. The influence of probe lift-up height on CNT electrical properties.. [468]
93. 具有三维力反馈的原子力显微镜纳米操作系统 [467]
94. Phase modulation mode of scanning ion conductance microscopy [460]
95. 纳电子器件制备的单根碳纳米管精确装配与电连接研究 [459]
96. Lattice Orientation Referenced Graphene Cutting with Atomic Force .. [457]
97. Rapid and Label-Free Separation of Burkitt's Lymphoma Cells from R.. [456]
98. Supermedia User Interface for Scanning Probe Microscopy [451]
99. 单分子病毒三维可控操作方法 [451]
100. Reconstruction of an AFM image based on estimation of the tip shap.. [451]

Downloads

1. 铜表面化学气相沉积石墨烯的研究进展:生长行为与控制制备 [377]
2. Progress of graphene growth on copper by chemical vapor deposition.. [277]
3. Probing protein-protein interaction forces using single-molecule f.. [260]
4. Multiscale modeling and simulation for optimizing polymer bulk het.. [221]
5. Simultaneous separation and concentration of micro- and nano-parti.. [208]
6. Atomic Force Microscope-Based Nanorobotic System for Nanoassembly [204]
7. Actuation Methods for Nanorobotic Manipulation and Assembly [195]
8. 基于原子力显微镜的石墨烯可控裁剪方法研究 [194]
9. 基于AFM的红细胞及不同侵袭程度癌细胞的成像及机械特性测量 [190]
10. AFM based MWCNT nanomanipulation with force and visual feedback [188]
11. Investigation of protein-protein interactions in cancer targeted t.. [188]
12. Sensor Referenced Real-time Visual Feedback in Nanorobotic Manipul.. [186]
13. Modeling and analyzing nano-particle pushing with an AFM by using .. [185]
14. Cutting Forces Related with Lattice Orientations of Graphene Using.. [181]
15. 基于AFM的淋巴瘤细胞成像及其机械特性测定 [174]
16. 利用AFM探测淋巴瘤细胞表面CD20抗原与其抗体的相互作用 [172]
17. A Fully Automated System for Measuring Cellular Mechanical Propert.. [172]
18. Atomic force microscopy imaging and mechanical properties measurem.. [172]
19. 基于AFM单分子力谱技术的CD20-Rituximab间相互作用力测量 [171]
20. Drug-Induced Changes of Topography and Elasticity in Living B Lymp.. [171]
21. Manipulation of DNA origami nanotubes in liquid using a programmab.. [171]
22. 锯齿型石墨烯带缺陷改性方法研究 [170]
23. Cutting graphene using an atomic force microscope based nanorobot [165]
24. Imaging and measuring the molecular force of lymphoma pathological.. [165]
25. A stochastic state prediction in AFM based nanomanipulation [162]
26. 面向可视化纳米操作的DNA分子运动学建模研究 [161]
27. Imaging and measuring the rituximab-induced changes of mechanical .. [161]
28. Measuring the physical properties of the lymphoma cells using atom.. [157]
29. 3D nano forces sensing for an AFM based nanomanipulator [155]
30. Dielectrophoretic assembly and atomic force microscopy modificatio.. [154]
31. 基于AFM推动的纳米粒子运动学模型研究 [153]
32. Feature referenced tip localization enhanced by probability motion.. [153]
33. An extended PI model for hysteresis and creep compensation in AFM .. [152]
34. Sensor Referenced Real-Time Videolization of Atomic Force Microsco.. [151]
35. The effects of vacancies on the transport properties of zigzag gra.. [150]
36. AFM单细胞单分子形貌成像的研究进展 [150]
37. Activation of human ether-a-go-go related gene (hERG) potassium ch.. [149]
38. Accurate Estimation of Tip Shape for Reconstructing AFM Image [147]
39. Drug-Induced Changes of Topography in Living B Lymphoma Cells: An .. [144]
40. Measuring the molecular force of Burkitt's lymphoma patient cells .. [144]
41. Defect Integration of Reduced Graphene Oxide based on Dielectropho.. [140]
42. Detecting CD20-Rituximab specific interactions on lymphoma cells u.. [139]
43. An experimental study on protein-protein interaction using atomic .. [138]
44. Construction of 3D structure with virus using AFM based nanorobot [138]
45. 具有实时视觉/触觉反馈的纳米操作系统 [137]
46. Supermedia User Interface for Scanning Probe Microscopy [136]
47. A probability approach for on-line tip localization with local sca.. [134]
48. Friction anisotropy dependence on lattice orientation of graphene [134]
49. Extracellular-controlled breast cancer cell formation and growth u.. [131]
50. Imaging and measuring the protein distribution of lymphoma cells u.. [130]
51. 机器人化微纳操作研究进展 [129]
52. Probing the molecular interactions of isolated CD20 proteins and l.. [127]
53. 纳电子器件制备的单根碳纳米管精确装配与电连接研究 [123]
54. Investigating the Relationship between CD20-Rituximab Binding Forc.. [123]
55. AFM-Based Robotic Nano-Hand for Stable Manipulation at Nanoscale [123]
56. Detection and real-time correction of faulty visual feedback in at.. [121]
57. Drift Compensation in AFM-Based Nanomanipulation by Strategic Loca.. [121]
58. Supermedia User Interface for Scanning Probe Microscopy [120]
59. Drift Compensation and Faulty Display Correction in Robotic Nano M.. [119]
60. Large-scale assembly of Cu/CuO nanowires for nano-electronic devic.. [116]
61. High-Throughput Fabrication and Modular Assembly of 3D Heterogeneo.. [116]
62. 具有三维力反馈的原子力显微镜纳米操作系统 [115]
63. 高速自动化细胞机械特性测量系统 [114]
64. Phase modulation mode of scanning ion conductance microscopy [114]
65. A probabilistic approach for on-line positioning in nano manipulat.. [110]
66. AFM tip on-line positioning by using the landmark in nano-manipula.. [110]
67. Virtual Nano-Hand: A Stable Pushing Strategy in AFM Based Sensorle.. [110]
68. 单分子病毒三维可控操作方法 [110]
69. Nano-Manipulation Based on Real-Time Compressive Tracking [110]
70. Force analysis of top-down forming CNT electrical connection using.. [109]
71. 基于纳米操作机器人的单根CNT装配方法研究 [109]
72. Drift Compensation and Faulty Display Correction in Robotic Nano M.. [109]
73. Nanodot deposition and its application with atomic force microscop.. [109]
74. Detecting CD20-Rituximab interaction forces using AFM single-molec.. [108]
75. 具有力觉与视觉反馈的交互式纳米操作系统 [107]
76. Non-ultraviolet-based patterning of polymer structures by opticall.. [104]
77. An experimental study on imaging Burkitt's lymphoma cells by atomi.. [103]
78. Precise assembly and electrical contact of MWCNT based on AC diele.. [103]
79. Feature referenced tip localization in robotic nano manipulation [101]
80. Stiffness measurement of Burkitt's lymphoma cells with atomic forc.. [101]
81. 具有超媒体人机接口的纳米操作系统 [100]
82. Nano-rod pushing with AFM using nano-hand strategy [100]
83. Investigating the morphology and mechanical properties of blastome.. [100]
84. 面向微纳米自动化操控的光诱导电液动力学关键技术 [100]
85. Nanoscale imaging and mechanical analysis of Fc receptor-mediated .. [100]
86. AFM单分子力谱技术测量膜蛋白力学特性的研究进展 [99]
87. Landmark Based Sensing and Positioning in Robotic Nano Manipulatio.. [98]
88. A nanomanipulation system based on a sample-scanning AFM [97]
89. Sensor referenced guidance and control for robotic nanomanipulatio.. [97]
90. 面向细胞机械特性检测的AFM探针快速定位方法 [96]
91. 基于概率的纳米物体运动模型 [96]
92. 面向AFM的纳米目标快速重定位方法 [95]
93. Development of Mechanostimulated Patch-Clamp System for Cellular P.. [94]
94. 基于数控雕刻机的微流控芯片制作方法 [93]
95. Optically induced electrohydrodynamic instability-based micro-patt.. [93]
96. Applications of Micro/Nano Automation Technology in Detecting Canc.. [93]
97. Modeling and analyzing nano-rod pushing with an AFM [88]
98. Mapping CD20 molecules on the lymphoma cell surface using atomic f.. [86]
99. Rapid Fabrication of Nanomaterial Electrodes Using Digitally Contr.. [86]
100. Combined Experimental and Numerical Simulation Study of PDMS Pneum.. [84]