Keywords Cloud

Research Outputs

Co-authors[TOP 5]

Usage Statistics


  Total Views
 1822

  Access Source
    internal: 19
    External: 1803
    Domestic: 1416
    Abroad: 406

  Annual Views
 72

  Access Source
    internal: 2
    External: 70
    Domestic: 54
    Abroad: 18

  Monthly Views
 5

  Access Source
    internal: 0
    External: 5
    Domestic: 4
    Abroad: 1

Visits

Visits

1. Motion Parameter Optimization and Sensor Scheduling for the Sea-Wi.. [1268]
2. Motion model and control strategies for an underwater glider [1171]
3. Development and Experiments of the Sea-Wing Underwater Glider   .. [1120]
4. Marine Vehicle Sensor Network Architecture and Protocol Designs fo.. [998]
5. 水下滑翔机低功耗控制系统实现 [975]
6. Design of a Wheel-Propeller-Leg Integrated Amphibious Robot [973]
7. 水下滑翔机器人运动分析与载体设计 [930]
8. Identifying rhodamine dye plume sources in near-shore oceanic envi.. [838]
9. Spiraling motion of underwater gliders: Modeling, analysis, and ex.. [822]
10. 基于多普勒和光纤陀螺水下机器人导航系统研究 [818]
11. Behavior-based control of an autonomous underwater vehicle for ada.. [785]
12. Steady three dimensional gliding motion of an underwater glider [737]
13. Discrete-time quasi-sliding mode control of underwater vehicles [705]
14. 基于代理模型的水下滑翔机机翼设计优化方法 [690]
15. 水下滑翔机垂直面运动优化控制 [664]
16. 轮桨腿一体化两栖机器人控制系统设计 [621]
17. 水下滑翔机器人运动调节机构设计与运动性能分析 [620]
18. 多水下滑翔机海洋采样路径规划 [618]
19. 基于改进Xmodem协议的水下滑翔机通信系统设计 [609]
20. Near-optimal collecting data strategy based on ordinary kiriging v.. [593]
21. Modeling and Optimization of Wheel-Propeller-Leg Integrated Drivin.. [588]
22. 水下滑翔机自适应覆盖采样 [588]
23. 水下滑翔机器人载体外形设计与优化 [585]
24. Design and analysis of folding propulsion mechanism for hybrid-dri.. [583]
25. 轮桨腿一体两栖机器人爬行步态规划研究 [580]
26. Optimal Distribution of Propulsion for an Amphibious Robot Based o.. [569]
27. 水下滑翔机器人水动力研究与运动分析 [559]
28. 能耗最优的水下滑翔机采样路径规划 [558]
29. 面向海洋观测的长续航力移动自主观测平台发展现状与展望 [549]
30. 轮桨腿一体两栖机器人推进系统控制分配研究 [547]
31. 深水滑翔机器人耐压壳体结构优化设计 [542]
32. Propeller of Amphibious Robot optimizing Design Based on Integrate.. [542]
33. 两栖机器人轮桨腿驱动机构多目标优化设计 [539]
34. 水下滑翔机器人运动机理仿真与实验 [538]
35. Adaptive Neural Network Control with Control Allocation for A Man.. [536]
36. 波浪驱动无人水面机器人运动效率分析 [533]
37. 7000米载人潜水器动力定位系统研究 [522]
38. Optimization of Large Scales Ocean Sampling for Minimization of th.. [522]
39. Gait Planning and Simulation of Obstacle Negotiation for an Amphib.. [514]
40. 水下滑翔机器人系统研究 [511]
41. 轮桨腿一体化两栖机器人控制系统设计 [501]
42. Development in Identification of Underwater Vehicles [500]
43. The development and the challenges of underwater vehicles for pola.. [498]
44. 水下机器人的神经网络自适应控制 [497]
45. 水下滑翔机器人控制系统设计与实现 [493]
46. Development of a Virtual Platform for Telepresence Control of an U.. [492]
47. 两栖机器人驱动装置控制器设计 [490]
48. 7000米载人潜水器推进器故障容错控制分配研究 [487]
49. 多水下机器人自主海洋特征场跟踪研究 [477]
50. Folding Propeller Design and Analysis for a Hybrid Driven Underwat.. [468]
51. 用于海洋测量平台的波浪能转化机构 [460]
52. 基于模糊神经网络水下机器人直接自适应控制 [452]
53. UUV推进系统容错控制分配算法研究 [447]
54. Surrogate Models for Shape Optimization of Underwater Glider [442]
55. 自主水下机器人追踪深海热液非浮力羽流的仿生策略 [439]
56. 基于GPRS的水下滑翔机器人监控系统设计 [438]
57. Implementation of fuzzy color extractor on NI myRIO embedded devic.. [433]
58. 深海滑翔机技术与应用现状 [431]
59. Design of integrated navigation system for autonomous underwater r.. [427]
60. A novel method for failure analysis based on three-dimensional ana.. [422]
61. 基于栅格地图的多化学羽流源定位 [421]
62. 一种水下设备用熔断式抛载装置 [418]
63. Optimal sensors deployment for tracking level curve based on poste.. [412]
64. 基于SQP算法的7000m载人潜水器有约束非线性控制分配研究 [404]
65. 转子系统油膜振荡的小波包分解与频带能量比例特征分析 [401]
66. 浅水滑翔机用俯仰调节装置 [398]
67. 海洋机器人环境能源收集利用技术现状 [392]
68. AUV智能化现状与发展趋势 [380]
69. 深水油气开发中的水下机器人 [377]
70. 一种水下滑翔机能耗最优的运动参数优化方法 [377]
71. Path planning method of underwater glider based on energy consumpt.. [376]
72. Study on the transit efficiency for hybrid-driven underwater glide.. [364]
73. 水下机器人在极地科学考察中的应用 [358]
74. Dynamics Analysis of Wave-driven Unmanned Surface Vehicle in Longi.. [347]
75. 一种用于海洋测量平台的波浪能转化机构 [343]
76. Glider-observed anticyclonic eddy in northern South China Sea [342]
77. Virtual platform of a manned submersible vehicle carrying an under.. [340]
78. Study of manipulator operations maneuvered by a ROV in virtual env.. [328]
79. 基于局部流场构建的水下滑翔机路径规划 [325]
80. 水下机器人用铱星与GPS组合天线 [324]
81. 水下滑翔机的海洋应用 [319]
82. 水下机器人用双向排油式浮力调节装置 [316]
83. 一种水下机器人用双向排油式浮力调节装置 [314]
84. Extraction of visual texture features of seabed sediments using an.. [307]
85. “蛟龙号”载人潜水器控制与声学系统研究集体 [303]
86. 水密同轴连接器 [301]
87. Cooperative Path Planning for Networked Gliders Under Weak Communi.. [301]
88. 一种水下机器人用质心调节装置 [298]
89. Study on the motion characteristics in 3D space for a hybrid-drive.. [297]
90. 国产水下滑翔机2014年南海海试实验数据分析 [297]
91. From Simulation to Validation: Moth-Inspired Chemical Plume Tracin.. [295]
92. Sea surface cooling in the Northern South China Sea observed using.. [295]
93. Estimation and forecast of depth-averaged ocean current using unde.. [295]
94. 一种水下滑翔机用低功耗控制系统 [293]
95. Virtual platform of a remotely operated vehicle [293]
96. 一种水下设备用熔断式抛载装置及其控制方法 [292]
97. 一种水下机器人用铱星与GPS组合天线 [290]
98. 两栖机器人电机控制装置 [289]
99. Development of a Dynamic Model for a Constant Tension Winch [288]
100. 一种水下滑翔机用低功耗控制系统及其控制方法 [280]

Downloads

1. Development and Experiments of the Sea-Wing Underwater Glider   .. [438]
2. Design of a Wheel-Propeller-Leg Integrated Amphibious Robot [309]
3. 水下滑翔机器人运动分析与载体设计 [280]
4. 基于多普勒和光纤陀螺水下机器人导航系统研究 [275]
5. 水下滑翔机低功耗控制系统实现 [269]
6. 水下滑翔机器人载体外形设计与优化 [235]
7. Motion model and control strategies for an underwater glider [216]
8. Spiraling motion of underwater gliders: Modeling, analysis, and ex.. [211]
9. 多水下滑翔机海洋采样路径规划 [196]
10. Marine Vehicle Sensor Network Architecture and Protocol Designs fo.. [191]
11. Behavior-based control of an autonomous underwater vehicle for ada.. [189]
12. Steady three dimensional gliding motion of an underwater glider [189]
13. 水下滑翔机器人运动调节机构设计与运动性能分析 [188]
14. 水下机器人的神经网络自适应控制 [177]
15. Development in Identification of Underwater Vehicles [177]
16. Discrete-time quasi-sliding mode control of underwater vehicles [176]
17. Propeller of Amphibious Robot optimizing Design Based on Integrate.. [173]
18. 基于代理模型的水下滑翔机机翼设计优化方法 [172]
19. 水下滑翔机器人水动力研究与运动分析 [170]
20. 轮桨腿一体两栖机器人爬行步态规划研究 [164]
21. 深水滑翔机器人耐压壳体结构优化设计 [162]
22. Optimal Distribution of Propulsion for an Amphibious Robot Based o.. [161]
23. Motion Parameter Optimization and Sensor Scheduling for the Sea-Wi.. [156]
24. Design and analysis of folding propulsion mechanism for hybrid-dri.. [154]
25. 水下滑翔机垂直面运动优化控制 [153]
26. 轮桨腿一体化两栖机器人控制系统设计 [150]
27. 两栖机器人驱动装置控制器设计 [150]
28. Adaptive Neural Network Control with Control Allocation for A Man.. [150]
29. 面向海洋观测的长续航力移动自主观测平台发展现状与展望 [150]
30. Modeling and Optimization of Wheel-Propeller-Leg Integrated Drivin.. [149]
31. 水下滑翔机自适应覆盖采样 [149]
32. 水下滑翔机器人运动机理仿真与实验 [145]
33. 深海滑翔机技术与应用现状 [145]
34. 基于改进Xmodem协议的水下滑翔机通信系统设计 [144]
35. 水下滑翔机器人系统研究 [142]
36. 7000米载人潜水器推进器故障容错控制分配研究 [141]
37. Near-optimal collecting data strategy based on ordinary kiriging v.. [137]
38. Optimization of Large Scales Ocean Sampling for Minimization of th.. [135]
39. 基于GPRS的水下滑翔机器人监控系统设计 [130]
40. The development and the challenges of underwater vehicles for pola.. [127]
41. Path planning method of underwater glider based on energy consumpt.. [127]
42. 轮桨腿一体两栖机器人推进系统控制分配研究 [126]
43. Implementation of fuzzy color extractor on NI myRIO embedded devic.. [125]
44. Development of a Virtual Platform for Telepresence Control of an U.. [125]
45. 能耗最优的水下滑翔机采样路径规划 [124]
46. Identifying rhodamine dye plume sources in near-shore oceanic envi.. [124]
47. 两栖机器人轮桨腿驱动机构多目标优化设计 [121]
48. 水下滑翔机器人控制系统设计与实现 [121]
49. 基于模糊神经网络水下机器人直接自适应控制 [119]
50. 轮桨腿一体化两栖机器人控制系统设计 [118]
51. 基于SQP算法的7000m载人潜水器有约束非线性控制分配研究 [116]
52. Gait Planning and Simulation of Obstacle Negotiation for an Amphib.. [112]
53. 多水下机器人自主海洋特征场跟踪研究 [111]
54. 水下滑翔机的海洋应用 [107]
55. UUV推进系统容错控制分配算法研究 [104]
56. AUV智能化现状与发展趋势 [104]
57. 转子系统油膜振荡的小波包分解与频带能量比例特征分析 [100]
58. Folding Propeller Design and Analysis for a Hybrid Driven Underwat.. [100]
59. 波浪驱动无人水面机器人运动效率分析 [99]
60. Optimal sensors deployment for tracking level curve based on poste.. [98]
61. Glider-observed anticyclonic eddy in northern South China Sea [97]
62. 国产水下滑翔机2014年南海海试实验数据分析 [95]
63. 海洋机器人环境能源收集利用技术现状 [90]
64. 一种水下滑翔机能耗最优的运动参数优化方法 [89]
65. 基于栅格地图的多化学羽流源定位 [87]
66. 自主水下机器人追踪深海热液非浮力羽流的仿生策略 [87]
67. Cooperative Path Planning for Networked Gliders Under Weak Communi.. [85]
68. Design of integrated navigation system for autonomous underwater r.. [84]
69. 水下机器人在极地科学考察中的应用 [83]
70. Control system for long-range survey hybrid-driven underwater glid.. [82]
71. 一种轮足-尾鳍混合驱动的仿生水陆两栖机器人 [81]
72. Estimation and forecast of depth-averaged ocean current using unde.. [80]
73. 用于海洋测量平台的波浪能转化机构 [77]
74. 浅水滑翔机用俯仰调节装置 [76]
75. 用于海洋测量平台的螺旋桨驱动波浪能转化机构 [76]
76. 一种水下滑翔机用低功耗控制系统 [74]
77. Dynamics Analysis of Wave-driven Unmanned Surface Vehicle in Longi.. [74]
78. 基于局部流场构建的水下滑翔机路径规划 [74]
79. Navigation positioning algorithm for underwater gliders in three-d.. [73]
80. A novel method for failure analysis based on three-dimensional ana.. [72]
81. Hydrodynamic Performance Analysis of a Biomimetic Manta Ray Underw.. [72]
82. Operating an Underwater Manipulator via P300 Brainwaves [71]
83. Development of a Dynamic Model for a Constant Tension Winch [69]
84. 一种水下设备用熔断式抛载装置 [68]
85. Study on the transit efficiency for hybrid-driven underwater glide.. [68]
86. Lagrangian dynamic modeling of wave-driven unmanned surface vehicl.. [68]
87. 2D scalar field estimation based on spatial correlation of Hessian.. [68]
88. Study on the motion characteristics in 3D space for a hybrid-drive.. [66]
89. Virtual platform of a manned submersible vehicle carrying an under.. [65]
90. 一种浅水滑翔机用俯仰调节装置 [64]
91. Sea surface cooling in the Northern South China Sea observed using.. [63]
92. A Behavior-Based Planning Strategy for Deep-sea Hydrothermal Plume.. [62]
93. Dynamic modeling of wave driven unmanned surface vehicle in longit.. [62]
94. 7000米载人潜水器动力定位系统研究 [61]
95. 深水油气开发中的水下机器人 [61]
96. Clustered routing protocol based on improved K-means algorithm for.. [61]
97. 水下滑翔机海洋环境深平均流估计方法 [61]
98. 水下机器人用双向排油式浮力调节装置 [60]
99. 一种水下设备用熔断式抛载装置及其控制方法 [60]
100. Time Series Prediction Methods for Depth-Averaged Current Velociti.. [59]