SIA OpenIR

Browse/Search Results:  1-10 of 96 Help

Selected(0)Clear Items/Page:    Sort:
混合数据聚类算法研究及在spark下的应用 学位论文
硕士, 沈阳: 中国科学院沈阳自动化研究所, 2019
Authors:  姜智涵
Adobe PDF(2363Kb)  |  Favorite  |  View/Download:13/1  |  Submit date:2019/07/14
混合属性数据  谱聚类  软子空间聚类  Spark  
Anomaly detection via adaptive greedy model 期刊论文
Neurocomputing, 2019, 卷号: 330, 页码: 369-379
Authors:  Hou DD(侯冬冬);  Cong Y(丛杨);  Sun G(孙干);  Liu J(刘霁);  Xu XW(徐晓伟)
View  |  Adobe PDF(2529Kb)  |  Favorite  |  View/Download:174/28  |  Submit date:2018/12/16
Anomaly detection  Dictionary selection  Forward–backward greedy algorithm  ℓ0 norm  ℓ2,0 norm  
Tip-assisted electrohydrodynamic jet printing for high-resolution microdroplet deposition 期刊论文
Materials and Design, 2019, 卷号: 166, 页码: 1-9
Authors:  Zou WH(邹旿昊);  Yu HB(于海波);  Zhou PL(周培林);  Liu LQ(刘连庆)
View  |  Adobe PDF(2711Kb)  |  Favorite  |  View/Download:146/21  |  Submit date:2019/02/09
Electrohydrodynamic (EHD) printing  Tip-assisted EHD  Micropatterning  High-resolution printing  
Biomechanical comparison of posterior intermediate screw fixation techniques with hybrid monoaxial and polyaxial pedicle screws in the treatment of thoracolumbar burst fracture: a finite element study 期刊论文
JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2019, 卷号: 14, 页码: 1-8
Authors:  Liu, Huan;  Wang HW(王洪伟);  Liu J(刘军);  Li CQ(李长青);  Zhou Y(周跃);  Xiang LB(项良碧)
View  |  Adobe PDF(3374Kb)  |  Favorite  |  View/Download:22/1  |  Submit date:2019/06/18
Biomechanics  Thoracolumbar fracture  Hybrid  Monoaxial pedicle screw  Polyaxial pedicle screw  
基于E-t-SNE的混合属性数据降维可视化方法 期刊论文
计算机工程与应用, 2019, 页码: 1-10
Authors:  魏世超;  李歆;  张宜弛;  周晓锋;  李帅
View  |  Adobe PDF(752Kb)  |  Favorite  |  View/Download:8/2  |  Submit date:2019/06/29
t-SNE算法  混合属性数据  降维  可视化  
Estimation of continuous elbow joint movement based on human physiological structure 期刊论文
BIOMEDICAL ENGINEERING ONLINE, 2019, 卷号: 18, 页码: 1-15
Authors:  Li, Kexiang;  Zhang JH(张建华);  Liu X(刘璇);  Zhang ML(张明路)
View  |  Adobe PDF(939Kb)  |  Favorite  |  View/Download:20/6  |  Submit date:2019/04/13
Intention recognition  Elbow movement  Upper-limb physiological structure  Biomechanical  Surface electromyography  Genetic algorithm  
Design of an improved ethernet AVB model for real-time communication in in-vehicle network 会议论文
Proceedings of 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2019, Chengdu, China, March 15-17, 2019
Authors:  Liu XY(刘晓宇);  Nie ZB(聂振邦);  Li D(李栋);  Yu HB(于海斌)
View  |  Adobe PDF(343Kb)  |  Favorite  |  View/Download:38/5  |  Submit date:2019/07/14
IEEE 802.1 Audio/Video Bridging  time-triggered scheduling  in-vehicle network  
Towards secure industrial iot: Blockchain system with credit-based consensus mechanism 期刊论文
IEEE Transactions on Industrial Informatics, 2019, 卷号: 15, 期号: 6, 页码: 3680-3689
Authors:  Huang, Junqin;  Kong LH(孔令和);  Chen, Guihai;  Wu, Min-You;  Liu, Xue;  Zeng P(曾鹏)
View  |  Adobe PDF(1788Kb)  |  Favorite  |  View/Download:32/5  |  Submit date:2019/06/29
Blockchain  credit-based  directed acyclic graph (DAG)  efficiency  industrial IoT (IIoT)  privacy  proof-of-work (PoW)  security  
An airSea manta-ray robot in 5G OGCE 会议论文
Proceedings of the 2019 2nd International Conference on Service Robotics Technologies, ICSRT 2019, Beijing, China, March 22-24, 2019
Authors:  Lv Z(吕志);  Wang ZF(王忠锋);  Lv Y(吕毅);  Yuan MZ(苑明哲)
View  |  Adobe PDF(853Kb)  |  Favorite  |  View/Download:38/9  |  Submit date:2019/08/03
air-sea manta-ray robot  underwater smart factory  robotics  5G open grid computing environment (5G OGCE)  underwater space station  5G control-cloud  distributed artificial intelligence (Distributed AI)  software architecture and engineering  
Model loss and distribution analysis of regression problems in machine learning 会议论文
2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, Zhuhai, China, February 22-24, 2019
Authors:  Yang N(杨楠);  Zheng ZY(郑泽宇);  Wang TR(王天然)
View  |  Adobe PDF(471Kb)  |  Favorite  |  View/Download:34/5  |  Submit date:2019/06/18
Statistics  machine learning  regression model  maximum likelihood