SIA OpenIR

Browse/Search Results:  1-10 of 70 Help

Selected(0)Clear Items/Page:    Sort:
Unified Low-Rank Matrix Estimate via Penalized Matrix Least Squares Approximation 期刊论文
IEEE Transactions on Neural Networks and Learning Systems, 2019, 卷号: 30, 期号: 2, 页码: 474-485
Authors:  Chang, Xiangyu;  Zhong, Yan;  Wang Y(王尧);  Lin SB(林绍波)
View  |  Adobe PDF(1882Kb)  |  Favorite  |  View/Download:62/11  |  Submit date:2018/07/31
Degrees of freedom  low-rank matrix estimate  multivariate linear regression  multivariate quantile regression (QR)  
Fast Learning With Polynomial Kernels 期刊论文
IEEE Transactions on Cybernetics, 2019, 卷号: 49, 期号: 10, 页码: 3780-3792
Authors:  Lin SB(林绍波);  Zeng, Jinshan
View  |  Adobe PDF(1160Kb)  |  Favorite  |  View/Download:39/4  |  Submit date:2018/07/31
Kernel Methods  Learning Systems  Learning Theory  Polynomial Kernel  
High-dimensional grouped folded concave penalized estimation via the LLA algorithm 期刊论文
Journal of the Korean Statistical Society, 2019, 卷号: 48, 期号: 1, 页码: 84-96
Authors:  Guo X(郭骁);  Wang Y(王尧);  Zhang H(张海)
View  |  Adobe PDF(471Kb)  |  Favorite  |  View/Download:36/8  |  Submit date:2019/02/24
Grouped variable selection  High-dimensional linear models  Folded concave penalty  Local linear approximation  Oracle estimator  
Optimization of Protein-Protein Interaction Measurements for Drug Discovery Using AFM Force Spectroscopy 期刊论文
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 卷号: 18, 页码: 509-517
Authors:  Yang YL(杨永良);  Zeng, Bixi;  Sun, Zhiyong;  Esfahani, Amir Monemian;  Hou, Jing;  Jiao ND(焦念东);  Liu LQ(刘连庆);  Chen, Liangliang;  Basson, Marc D.;  Dong, Lixin;  Yang, Ruiguo;  Xi N(席宁)
View  |  Adobe PDF(2547Kb)  |  Favorite  |  View/Download:45/9  |  Submit date:2019/06/18
Bionanotechnology  nanosensors  force spectroscopy  atomic force microscopy  protein-protein interactions  
Low-cost biometric recognition system based on NIR palm vein image 期刊论文
IET BIOMETRICS, 2019, 卷号: 8, 期号: 3, 页码: 206-214
Authors:  Wu W(吴微);  Elliott, Stephen John;  Lin S(林森);  Yuan, Weiqi
View  |  Adobe PDF(2505Kb)  |  Favorite  |  View/Download:57/11  |  Submit date:2019/05/12
Learning joint space–time–frequency features for EEG decoding on small labeled data 期刊论文
Neural Networks, 2019, 卷号: 114, 页码: 67-77
Authors:  Zhao DY(赵冬晔);  Tang FZ(唐凤珍);  Si BL(斯白露);  Feng XS(封锡盛)
View  |  Adobe PDF(797Kb)  |  Favorite  |  View/Download:129/17  |  Submit date:2019/04/13
Brain-computer interfaces  Convolutional neural network  Joint space–time–frequency feature learning  Subject-to-subject weight transfer  Small labeled data  
Long Time Sequential Task Learning From Unstructured Demonstration 期刊论文
IEEE ACCESS, 2019, 卷号: 7, 页码: 96240-96252
Authors:  Zhang HW(张会文);  Liu YW(刘玉旺);  Zhou WJ(周维佳)
View  |  Adobe PDF(24866Kb)  |  Favorite  |  View/Download:83/15  |  Submit date:2019/08/29
Bayesian segmentation  imitation learning  KL divergence  movement primitives  mixture model  
Motor Skills Learning and Generalization with Adapted Curvilinear Gaussian Mixture Model 期刊论文
Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 页码: 1-19
Authors:  Zhang HW(张会文);  Leng YQ(冷雨泉)
View  |  Adobe PDF(3938Kb)  |  Favorite  |  View/Download:113/16  |  Submit date:2019/03/30
Skill learning  Cross entropy  Curvilinear Gaussian model  Imitation learning  
Interval multiple-output soft sensors development with capacity control for wastewater treatment applications: A comparative study 期刊论文
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 卷号: 184, 页码: 82-93
Authors:  Xiao HJ(肖红军);  Ba, Bingxin;  Li, Xianxiang;  Liu, Jian;  Liu YQ(刘乙奇);  Huang DP(黄道平)
View  |  Adobe PDF(3200Kb)  |  Favorite  |  View/Download:64/7  |  Submit date:2019/02/24
Soft-sensors  Multi-output  Capacity control  Wastewater  Uncertainty  
Model loss and distribution analysis of regression problems in machine learning 会议论文
2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, Zhuhai, China, February 22-24, 2019
Authors:  Yang N(杨楠);  Zheng ZY(郑泽宇);  Wang TR(王天然)
View  |  Adobe PDF(471Kb)  |  Favorite  |  View/Download:39/7  |  Submit date:2019/06/18
Statistics  machine learning  regression model  maximum likelihood