SIA OpenIR

Browse/Search Results:  1-4 of 4 Help

Filters    
Selected(0)Clear Items/Page:    Sort:
Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding 期刊论文
IEEE Signal Processing Letters, 2021, 卷号: 28, 页码: 553-557
Authors:  Yang N(杨楠);  Zhou MC(周孟初);  Xia BJ(夏冰洁);  Guo XW(郭希旺);  Qi, Liang
Adobe PDF(1421Kb)  |  Favorite  |  View/Download:131/5  |  Submit date:2021/03/21
Deep Learning  Generative Adversarial Networks  Image Reconstruction  Latent Code Optimization  
A Domain-Guided Noise-Optimization-Based Inversion Method for Facial Image Manipulation 期刊论文
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 卷号: 30, 页码: 6198-6211
Authors:  Yang N(杨楠);  Zheng ZY(郑泽宇);  Zhou MC(周孟初);  Guo XW(郭希旺);  Qi, Liang;  Wang TR(王天然)
Adobe PDF(11534Kb)  |  Favorite  |  View/Download:124/11  |  Submit date:2021/07/24
Semantics  Optimization  Image reconstruction  Generative adversarial networks  Generators  Aerospace electronics  Training  Deep learning  generative adversarial networks  domain-guided encoder  noise optimization  
Generating and Editing Arbitrary Facial Images by Learning Feature Axis 期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 135468-135478
Authors:  Yang N(杨楠);  Xu YY(许原野);  Zheng ZY(郑泽宇);  Qi, Liang;  Guo XW(郭希旺);  Wang TR(王天然)
Adobe PDF(2449Kb)  |  Favorite  |  View/Download:161/15  |  Submit date:2020/08/22
Mathematical model  Gallium nitride  Computational modeling  Training  Generators  Decoding  Generative adversarial networks  Deep learning  generative adversarial networks  image generating  image editing  
Path Planning Method With Improved Artificial Potential Field-A Reinforcement Learning Perspective 期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 135513-135523
Authors:  Yao QF(么庆丰);  Zheng ZY(郑泽宇);  Qi, Liang;  Yuan HT(苑海涛);  Guo XW(郭希旺);  Zhao M(赵明);  Liu Z(刘智);  Yang TJ(杨天吉)
Adobe PDF(1998Kb)  |  Favorite  |  View/Download:121/13  |  Submit date:2020/08/22
Path planning  Learning (artificial intelligence)  Gravity  Potential energy  Mobile agents  Real-time systems  Reinforcement learning  neural network  potential field  path planning