SIA OpenIR

Browse/Search Results:  1-10 of 26 Help

Filters    
Selected(0)Clear Items/Page:    Sort:
Optimization spectrum decision parameters in CR using autonomously search algorithm 会议论文
2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, November 6-10, 2016
Authors:  Li YC(李永程);  Shen H(申海);  Wang, Manxi
View  |  Adobe PDF(745Kb)  |  Favorite  |  View/Download:143/27  |  Submit date:2017/04/16
Cognitive Engine  Bio-inspired Computing  Cognitive Radio  Automously Search Algorithm  Multi-objective Optimization Problem  
MULTI-OBJECTIVE COGNITIVE RADIO DECISION ENGINE BASED ON AUTONOMOUS SEARCH ALGORITHM 期刊论文
JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2016, 卷号: 22, 期号: 3, 页码: 2346-2362
Authors:  Li YC(李永程);  Shen H(申海);  Wang, Manxi
View  |  Adobe PDF(9859Kb)  |  Favorite  |  View/Download:148/23  |  Submit date:2017/02/05
Bio-inspired Computing  Cognitive Radio  Automously Search Algorithm  Multi-objective Optimization  
Spectrum allocation of cognitive radio based on autonomy evolutionary algorithm 期刊论文
Cybernetics and Information Technologies, 2016, 卷号: 16, 期号: 4, 页码: 87-97
Authors:  Li YC(李永程);  Shen H(申海);  Wang, Manxi
View  |  Adobe PDF(604Kb)  |  Favorite  |  View/Download:92/25  |  Submit date:2017/02/05
Cognitive Radio  Spectrum Allocation  Graph Theory  Bio-inspired Computing  Autonomously Evolutionary Algorithm  
An bio-inspired complex system dynamic optimization decision method 会议论文
2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, June 8-12, 2015
Authors:  Shen H(申海);  Zhu YL(朱云龙);  Chen HN(陈瀚宁);  Zhang DY(张丁一)
View  |  Adobe PDF(125Kb)  |  Favorite  |  View/Download:161/46  |  Submit date:2015/12/19
Bio-inspired Optimization Algorithm  Dynamics Modle  Swarm Dynamics  Population Dynamics  
Lifecycle-Based Swarm Optimization Method for Numerical Optimization 期刊论文
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 卷号: 2014, 页码: 1-12
Authors:  Shen H(申海);  Zhu YL(朱云龙);  Liang, Xiaodan
View  |  Adobe PDF(3151Kb)  |  Favorite  |  View/Download:192/37  |  Submit date:2015/02/04
Adaptive Bacterial Foraging Optimization Algorithm with Social Foraging Strategy for Multi-modal optimization problem 会议论文
EVOLVE 2014 Proceedings, Beijing, July 1-4, 2014
Authors:  Shen H(申海);  Zhu YL(朱云龙)
View  |  Adobe PDF(1757Kb)  |  Favorite  |  View/Download:94/14  |  Submit date:2016/09/13
Bacterial Foraging Optimization Algorithm  Social Foraging  Multimodal Numerical Optimization  
Adaptive bacterial foraging optimization algorithm based on social foraging strategy 期刊论文
Journal of Networks, 2014, 卷号: 9, 期号: 3, 页码: 799-806
Authors:  Shen H(申海);  Zhu YL(朱云龙)
View  |  Adobe PDF(923Kb)  |  Favorite  |  View/Download:348/70  |  Submit date:2014/05/14
Bacterial Foraging Optimization Algorithm  Social Foraging  Multimodal Numerical Optimization  
Optimization algorithm based on biology life cycle theory 会议论文
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Nanning, China, July 28-31, 2013
Authors:  Shen H(申海);  Niu B(牛奔);  Zhu YL(朱云龙);  Chen HN(陈瀚宁)
View  |  Adobe PDF(271Kb)  |  Favorite  |  View/Download:517/85  |  Submit date:2013/10/04
Intelligent Computing  Life Cycle  Optimization  
A discrete artificial bee colony algorithm for RFID network scheduling 期刊论文
International Journal of Advancements in Computing Technology, 2012, 卷号: 4, 期号: 14, 页码: 324-332
Authors:  Qi WY(齐维毅);  Shen H(申海);  Chen HN(陈瀚宁)
View  |  Adobe PDF(764Kb)  |  Favorite  |  View/Download:458/97  |  Submit date:2013/04/21
Artificial Intelligence  Radio Frequency Identification (Rfid)  Scheduling  
A novel multi-objective optimization algorithm based on artificial bee colony 会议论文
Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication, Dublin, Ireland, July 12-16, 2011
Authors:  Zou WP(邹文平);  Zhu YL(朱云龙);  Chen HN(陈瀚宁);  Shen H(申海)
Adobe PDF(506Kb)  |  Favorite  |  View/Download:804/185  |  Submit date:2012/06/06
Evolutionary Algorithms  Pareto Principle