SIA OpenIR

Browse/Search Results:  1-10 of 136 Help

Filters    
Selected(0)Clear Items/Page:    Sort:
A New Type of Industrial Robot Trajectory Generation Component Based on Motion Modularity Technology 期刊论文
Journal of Robotics, 2020, 卷号: 2020, 页码: 1-11
Authors:  Liu ZM(刘钊铭);  Liu NL(刘乃龙);  Wang HW(王洪伟);  Tian S(田申);  Bai N(白宁);  Zhang F(张峰);  Cui L(崔龙)
Adobe PDF(5229Kb)  |  Favorite  |  View/Download:368/114  |  Submit date:2020/03/01
Learning peg-in-hole assembly using Cartesian DMPs with feedback mechanism 期刊论文
Assembly Automation, 2020, 卷号: 40, 期号: 6, 页码: 895–904
Authors:  Liu NL(刘乃龙);  Zhou XD(周晓东);  Liu ZM(刘钊铭);  Wang HW(王洪伟);  Cui L(崔龙)
Adobe PDF(1950Kb)  |  Favorite  |  View/Download:74/4  |  Submit date:2020/10/31
Peg-in-hole  Robotic assembly  Cartesian DMPs  Learning from demonstration  Compliance  Force control  Control  Automatic assembly  Assembly  Artificial intelligence  Assembly sequence planning  
Path Planning Method With Improved Artificial Potential Field-A Reinforcement Learning Perspective 期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 135513-135523
Authors:  Yao QF(么庆丰);  Zheng ZY(郑泽宇);  Qi, Liang;  Yuan, Haitao;  Guo, Xiwang;  Zhao M(赵明);  Liu Z(刘智);  Yang TJ(杨天吉)
Adobe PDF(1998Kb)  |  Favorite  |  View/Download:97/13  |  Submit date:2020/08/22
Path planning  Learning (artificial intelligence)  Gravity  Potential energy  Mobile agents  Real-time systems  Reinforcement learning  neural network  potential field  path planning  
Face Attribute Recognition with Multimodal Fusion 会议论文
2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering, AUTEEE 2020, Shenyang, China, November 20-22, 2020
Authors:  Zhao M(赵明);  Liu C(刘畅);  Zheng ZY(郑泽宇);  Yao QF(么庆丰);  Yang N(杨楠);  Xu YY(许原野)
Adobe PDF(194Kb)  |  Favorite  |  View/Download:6/0  |  Submit date:2021/02/27
Face attribute recognition  Multimodal fusion  Graph neural network  Multi-task learning  
A modified cartesian space DMPs model for robot motion generation 会议论文
Intelligent Robotics and Applications - 12th International Conference, ICIRA 2019, Proceedings, Shenyang, China, August 8-11, 2019
Authors:  Liu NL(刘乃龙);  Liu ZM(刘钊铭);  Cui L(崔龙)
Adobe PDF(944Kb)  |  Favorite  |  View/Download:95/15  |  Submit date:2019/09/05
Dynamic movement primitives  DMPs  Robot learning  Learning from demonstration  
无权访问的条目 会议论文
Authors:  Yang L(杨亮);  Li, Bing;  Yang GY(杨国永);  Chang Y(常勇);  Liu ZM(刘钊铭);  Jiang, Biao
Adobe PDF(1338Kb)  |  Favorite  |  View/Download:15/1  |  Submit date:2020/03/22
A self-calibration method for mobile manipulator 会议论文
Intelligent Robotics and Applications - 12th International Conference, ICIRA 2019, Proceedings, Shenyang, China, August 8-11, 2019
Authors:  Zou HB(邹杭波);  Li, Yinghao;  Zhu SJ(朱思俊);  Gu KF(谷侃锋);  Zhang, Xinggang;  Zhao MY(赵明扬)
Adobe PDF(749Kb)  |  Favorite  |  View/Download:108/26  |  Submit date:2019/09/05
Mobile manipulator  Self-calibration  Absolute position accuracy  
An hammerstein model based control method for shape memory alloy actuators 会议论文
Proceedings of the 38th Chinese Control Conference, CCC 2019, Guangzhou, China, July 27-30, 2019
Authors:  Zhang B(张弼);  Zhao M(赵明);  Xu Z(徐壮);  Zhao XG(赵新刚)
Adobe PDF(405Kb)  |  Favorite  |  View/Download:65/17  |  Submit date:2019/11/23
SMA  smart material  Hammerstein model  adaptive control  stability  
Contact force rendering method based on robot dynamics 会议论文
Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, Shenyang, China, June 9, 2018 - June 11, 2018
Authors:  Wei Q(魏青);  Liu NL(刘乃龙);  Liu ZM(刘钊铭);  Cui L(崔龙)
Adobe PDF(585Kb)  |  Favorite  |  View/Download:143/21  |  Submit date:2018/08/20
Contact Force Rendering  Virtual Robot  Rigid Contact  
A containerized simulation platform for robot learning peg-in-hole task 会议论文
Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, ICIEA 2018, Wuhan, China, May 31 - June 2, 2018
Authors:  Liu NL(刘乃龙);  Liu ZM(刘钊铭);  Wei Q(魏青);  Cui L(崔龙)
Adobe PDF(1726Kb)  |  Favorite  |  View/Download:150/42  |  Submit date:2018/08/08
Robotics  remote operation  artificial intelligence  machine learning  peg-in-hole