SIA OpenIR

Browse/Search Results:  1-6 of 6 Help

  Show only claimed items
Selected(0)Clear Items/Page:    Sort:
基于RGB-D相机的稠密即时定位与地图构建方法研究 学位论文
博士, 沈阳: 中国科学院沈阳自动化研究所, 2018
Authors:  付兴银
Adobe PDF(17284Kb)  |  Favorite  |  View/Download:100/22  |  Submit date:2018/12/16
稠密即时定位地图构建  面元  Icp  关键帧  Rgb-d  
Real-time large-scale dense mapping with surfels 期刊论文
Sensors (Switzerland), 2018, 卷号: 18, 期号: 5, 页码: 1-19
Authors:  Fu XY(付兴银);  Zhu F(朱枫);  Wu QX(吴清潇);  Sun YL(孙云雷);  Lu RR(鲁荣荣);  Yang, Ruigang
View  |  Adobe PDF(40946Kb)  |  Favorite  |  View/Download:151/17  |  Submit date:2018/06/17
Dense Mapping  Rgb-d Camera  Surfel  Loop Closure  Embedded Deformation Graph  
Search inliers based on redundant geometric constraints 期刊论文
Visual Computer, 2018, 页码: 1-14
Authors:  Lu RR(鲁荣荣);  Zhu F(朱枫);  Wu QX(吴清潇);  Fu XY(付兴银)
View  |  Adobe PDF(2545Kb)  |  Favorite  |  View/Download:167/8  |  Submit date:2018/11/18
Correspondence grouping  Geometric constraints  Correspondence voting  3D object recognition  
RGB-D dense SLAM with keyframe-based method 会议论文
Proceedings of SPIE 10845, Optical Sensing and Imaging Technologies and Applications, Beijing, China, May 22-24, 2018
Authors:  Fu XY(付兴银);  Zhu F(朱枫);  Wu QX(吴清潇);  Sun YL(孙云雷)
View  |  Adobe PDF(6919Kb)  |  Favorite  |  View/Download:44/6  |  Submit date:2019/01/13
dense SLAM  RGB-D camera  GPU, keyframe  surfel  
RGB-D dense mapping with feature-based method 会议论文
Proceedings of SPIE 10845, Optical Sensing and Imaging Technologies and Applications, Beijing, China, May 22-24, 2018
Authors:  Fu XY(付兴银);  Zhu F(朱枫);  Wu QX(吴清潇)o;  Lu RR(鲁荣荣)
View  |  Adobe PDF(8483Kb)  |  Favorite  |  View/Download:48/7  |  Submit date:2019/01/13
dense SLAM  RGB-D camera  TSDF  reconstruction  real-time  
Real-time depth camera tracking with geometrically stable weight algorithm 期刊论文
Optical Engineering, 2017, 卷号: 56, 期号: 3, 页码: 1-10
Authors:  Fu XY(付兴银);  Zhu F(朱枫);  Qi F(祁峰);  Wang MM(王明明)
View  |  Adobe PDF(1101Kb)  |  Favorite  |  View/Download:285/58  |  Submit date:2017/04/16
Camera Tracking  Weight Algorithm  Shuffle  Depth Camera  Reduction